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THE RESONANCE PROBE

D. Lepechinsky, A. Messiaen, P. Rolland

ABSTRACT. The experimental findings of the
report indicate satisfactory agreement with the theo-
retical expectations of Messiaen [14], Lepechinsky [16],
and Rolland [17] concerning electron density as fur-
nished by antiresonance, the thickness of the sheaths,
and even the frequency of "neutral electron” collisions.
The simplified theory of the authors is based on hydro-
dynamic equations with adequate limit conditions and
accounts well for the essential phenomena observed.

This holds true also for other problems of resonance
of the same kind [10, 28, 29], provided conditions are
such that non-collision damping is not destroyed by
resonance which is certainly not random as stated re-
cently in [30]. Experimentation to determine the lim-
its of application of the simplified theory and to
measure non-collisional effects is under way.

1. Introduction

The method of the resonance probe consists in superposing
a variable h-f voltage ¢, of frequency /27 on the direct volt-
age V5 applied to the classical Langmuir probe. The curvature
of the characteristic I (V) produces rectification which in-
creases the direct current of the probe by a quantity §I,, as
a function of the h-f frequency. The increase §I.. shows a
maximum for a given angular frequency wgr from which we can de-
duce certain characteristics of the plasma. The principal
stages of the investigation of the h-f probe were as follows
below.

Resonance was observed for the first time in 1960 by Taka-
yama, Ikegami, and Miyasaki [1]. The theoretical study of
Ichikawa and Ikegami [2], published in 1962, was based on an
infinite-plane geometry where the sheath was neglected. 1In
such a geometry, it was shown to be necessary to introduce a
certain arbitrary length L of the penetration of the h-f field
in the plasma. The model without sheath shows resonance at
the plasma frequency wp which seemed confirmed by the work of
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Cairns [3] in 1963. This conclusion began to appear doubtful
after 1963 from tha investigations of Peter, Muller, and Rab-
ben [4], Mayer [5], and Wimmel [6]. It appeared that the ion
sheath plays an essential role which results in a resonance
frequency wr< wp.

The only possibility of avoiding the introduction of the
arbitrary length L would have been to select a model with a
geometry for which field and potentials could effectively be
calculated. This was the case of a model investigated by
Vandenplas and Gould [7,8] in 1961. The model presented char-
acteristics analogous to those of the probe and was constituted
by a plane capacitor of which a part of the dielectric was
formed by a section of plasma. It had a resonance frequency

of wr< wp and further an antiresonance frequency wp = wp.* The
conclusions of Vandenplas and Gould [7,8] were experimentally
confirmed in [10,11]. Mayer [5] utilized this model for qual-
itative explanation of the author's experimental findings, al-
though obtained with a plane probe and consequently a rather
different geometry. In 1964, Harp and Crawford [12] carried
out a qualitative study of the erical probe in which the
numerical data of Pavkovich and Kino [13] concerning the pene-
tration of a h-f field in a plasma limited by an infinite plane
were adapted to the spherical case by the introduction of a
correctlon factor providing for decrease of the h-f field in
l/r In this study, the thickness of the sheath is arbitrarily
estlmated as 51 (» = Debye shielding distance) and the anti-
resonance phenomenon does not appear explicitly.

The theory proposed in 1964 by Messiaen [14] is based on
the resolution of a problem with adegquate limit conditions for
the resonator constituted by the probe, the sheath and the plasma.
No arbitrary parameter is introduced and the sheath is estimated
from the solution of the static problem [15].

This method is in principle applicable to any probe geom-—
etry for which the solution of the Laplace equation is cancelled
in the infinite and to the extent where the dimensions of the
probe are small in regard to the wavelength in vacuum. This
theory together with its extensions and limits [16,17], is sum-
marized in Section 2.

The experimental findings on resonance obtained by other
laboratories [12, 18, 191 agree qualitatively with our theoreti-

*It appeared also that the principal characteristics of this
system are very little modified by the electron temperature. The
latter gives rise to a subsidiary resonance spectrum for w>wp
which is observed when v/w is small [10].
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cal expectations. We present here a quantitative comparison of
these expectations with our experimental results regarding reso-
nance, antiresonance, electron density, Debye shielding distance,
thickness of the sheath, and the frequency of collisions.

The effect of transit time in the sheath and non-collision
damping which were investigated in [l17] are capable of greatly
affecting the amplitude of resonance and an experimental inves-
tigation of these effects is under way.

2. Theory of the Spherical Resonance Probe

Let us consider a metallic body submerged in an infinite
plasma and brought to a continuous potential V4% o in relation
to the plasma potential. This potential and the geometric form
of the probe determine the distribution of electron density of
the near environment of the probe in view of the appearance of
an ion sheet separating the probe from the non-disturbed plasma.
Let us further consider the effect of a h-f voltage ¢, (such
that |@,| <<|V,| ) additionally applied to the probe by limiting
.ourselves to the case where the frequency of the h-f signal is
such that the wavelength is very much larger than the dimen-
sions of the latter. This hypothesis makes it possible to ar-
rive at a "quasi-static" approximation for describing the elec-
tric field around the probe. This amounts to stating E =
- grad ¢ and makes it possible to reduce the electromagnetic to
an electrostatic problem for satisfactory description of this
field in the close vicinity of the probe, and consequently, to
derive the h-f current corresponding to the h-f voltage applied.
We also assume that, in the plasma under consideration, the h-f
motion of the ions is negligible in relation to that of the
electrons and that only the latter contribute to the resonance
effects. In order to obtain an approximate solution of the pro-
blem, we shall consider the plasma as cold and describe it by
its equivalent permittivity which permits a sufficiently accu-
rate description of the dominant effects. Since we are in the

presence of two problems of electrostatics under these conditions,

we must first solve the Poisson equation in order to obtain the
profile of electron density Ny around the probe and subsequently
treat the electromagnetic problem in this medium by a "quasi-
static" approximation. This can be done easily only for the
simple probe géometry. It is then possible to utilize a system
of natural coordinates of the arrangement under consideration
which will easily express the limit conditions.

The numerical solution of the Poisson equation for deter-
mining the density profile in the sheath has been given by sev-
eral authors for the plane, cylindrical and spherical geometry
on the basis of certain simplifying hypotheses on ion motion [20,
21, 22, 23]. It appears that the electron density decreases very
rapidly at a very short distance from the probe and becomes very
low in the immediate vicinity of the latter. This fact allows
us to approach the continuous variatig
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us to approach the continuous variation of density by a discon-
tinuous variation in order to obtain an analytical solution of
the h-f problem. We shall suppose that, in the sheath, the

electron density is negligible and that, outside of the sheath,
it has the value Ngy corresponding to the non-disturbed plasma.

The thickness of the sheath will be estimated from the numerical

solution of the Poisson equation by defining the sheath-plasma
boundary by the condition Ng = Ngo/2.

The h-f field is assumed to have the form e'lwt, and can
then be obtained by solving the Laplace equation in the media
considered with adequate expression of the limit conditions
(¢ = ¢, on the probe; ¢ = 0 to ~»; continuity of potential and
of the component of the electric-shift vector normal to the
boundary surface sheath-plasma). We must therefore select, for
the h-f resonator consisting of the system of probe, sheath and
plasma, a geometry making it easily possible to express these
conditions (accordingly, a plane probe constituted by a disc
will be assimilated to a flattened spheroid and a sylindrical
probe to an elongated spheroid).

a) Solution of h-f Problem

We shall discuss in detail only the spherical probe. The
reader will find in [14] the calculations for the plane and
cylindrical case which are treated identically. We shall here
neglect the effects due to reflection of electrons from the
sheath and assume that only scattering results from collision.

Let a be the radius of the
probe and b = a + g that of the
sheath. Our system of spherical
coordinates r, 96, ¢ will be cen-
tered in the center of the probe.
The permittivity of the sheath,
assumed to be empty, will be eg4;
that of the plasma surrounding
ep and assumed to be homogenous
and isotropic, shall be such that Fig. 1

wp _ 1
e’AE, =1= —w%(4+«"}’w) | (1)

where v is the frequency of
collision.

The different media are assumed to be electrically neutral
so that the Poisson equation is reduced to that of Laplace and
we can write in spherical coordinates (with § _ § _ , by reason
of symmetry): | 8§90 8¢

V=% L (P 58) -0 @



The h-f solution in media(l) and(2)will be:
qa;= A + I%AL et d;_= Chle .

The limit conditions in r = a and r = b give the relations

A + E = (p ~ (h-f potential applied to the probe)!
a ° '
A+ B c _ (3
b i (continuity of potential in r = b) (3)
- Eoé- =~ % (continuity of the normal component
2 P  of shiftD=c E in r = b)

and make it possible to fully solve the problem.

Specifically, the density of the h-f current collected by

the probe is given by
gien <, ab
2E . B_iwé,d) £, 6 —o—
JHF= eo‘a'"{;' = AWEZ z Yo E, _ _& (4)

€o 4-a

Accordingly, it appears that, when v/w<< 1, Jyp Passes through
a maximum for w = wr< wp as given by

.
,/6-af

and through a minimum for w = wp. The general rate of variation
of Jyrp with frequency is shown AT
in Fig. 2 (for v = 0). HF

The maximum value of Jyp
which is infinite in the ab-
sence of collision, is a func-
tion of this in accordance
with the following approxi-
mate relation:

] o _ & | ° “ro Y
“ HF (max) & | (e - Fig. 2

fe .  — —— - ——— ———

-
w

*For a plane or cylindrical probe, the findings obtained are
analogous [14]; the h-~f current passes through a maximum for
WR = wpd (with 0< 8 < 1) where 6 is a function only of the system
geometry, and through a minimum for wp = wp.



b) Solution of the Prohlem of Direct Current of the Probe

We know that the classic theory of the Langmuir probe
leads to the following relation for the density of the elec-
tronic current collected by the probe at a negative potential
Vo in relation to the plasma potential

e Joone (eVo/xT) , -

where K is the Boltzmann constant and

o
3«5’ n.e(xTe/aan | = density of the electronic-
.saturation current.

If we superpose, on the direct potential V,, an ac-potential
G¢gsinwt , then the mean value in time of the electronic current
reaching the probe is given, neglecting the transit time of the
electrons in the sheath, by

Jo= Jourp@VET) i | V=V [iglint, |

-~ -> T
i.e. Je = Fslup(V/XL)} ,f exp(eliBl sin wt) dt

n
with T "%3"

that is é 9’5{“?5{'\". } K"{;) _ (9)

where Io(x) is the modified Bessel function of the first kind and
of zero order.

With Boschi and Magistrelli [24], we are assuming that the /10
plasma is not disturbed until the boundary of the sheath in —_
which the potentlal difference Vo + § dgsinwt exists. Accordinly,
we must calculate’ S¢ / on the gas1s of the solution of

heath

the h-f problem and will then obtain.

52b fz--— §;'=‘¢L£”@:ﬁf;g=_ (10)




It will be easily seen that only this difference of potential
is subject to the effects of resonance and antiresonance, for
the same reason as the current Jyp evaluated above, and that
wr and wpa are the same for both parameters.

£el8d,

A series of development of I :

oN XTe

leads through increase S}:"‘SI«/S of the direct current of the
probe to the expression

ion .
Sle = £(BADG o 1)

R

)appears in (19) and

where Jo is given by (7) when &’$¢}IA¢'Q<1’* and S is the sur-
face of the probe. (9) shows that, for sufficiently negative
polarization, je tends toward zero as well as 8§ Ioc given by (11).
The rate of variation of § Io. as a function of w/wp for a given
sheath thickness and de- - T

ASI,.

rived from Rel. (1) is
shown in Fig. 3.

When we utilize Rel.
(10) and (11), it is easy to
see that:

1) the ratio of R 4
of the amplitude of the ]
peak of resonance to
that of § I, or w0 is
given by the expression

Sowe /FF  atllon) w2 | =
o rwat i ok I 02

i i llision v as a func-
which allows us to derive the frequency of co :
tion of wp and the thickness of the sheath: When we introduce
the parameter 7 ' (10) is written as

< ' w(w¢ j it A

(13)




When v < wg< wp, then the square of the modulus of this function
has a maximum for w # wr. The value of this maximum is

# ,(%): o wi(w? - wBY

X »3 w? ) (14)

and is an expression identical to (12);

2) the ratio varies as a function of sheath thickness g
(and consequently as a function of direct plarization Vg5) and
passes through a maximum for a well defined value of g [16].
The maximum R is reached for Wp

U (15)
2 2.
and amounts to Qﬁ;x:. (%)ﬂ I = EA?( -:—’l) .

which corresponds to a sheath thickness g = b - a a/2.

e

When wr< v, the maximum disappears. The module of Function
ﬂ3)is then on the order of wgy/v in w = wg. Resonance then no
longer exists.

Fig. 16 gives the rate of the module of (13) for six val-
ues of wr/wp. We see that the relative amplitude of the reso-
nance decreases when |Vo| increases (thick sheath: wgr+wp) and
when |Vg,|+o (the sheath disappears).

Formula (15) makes possible in principle direct measure-
ment of wp and Rel.(14)shows that measurement of Rpyyx allows
us to determine the frequency of collision v. It should be
noted that there exists in principle another way of liberating
ourselves from knowledge of the sheath, i.e. by utilizing two
different probes [12] or the same probe with several polariza-
tions. We then proceed by successive approximation in using
the findings of [15].

c) Non-Collision Effects

Two types of non-collision phenomena may profoundly modify
the amplitude of resonance, to wit: (a) reflection of the
electrons from the sheath which produces a mixture of energy-
dissipating phases and reduces h-f resonance, i.e. Jyr 9given by
(4) and § ¢g given by (10) as well as subsequently direct reso-
nance, i.e. § Ioc given by (11); (b) the transit time of the
electrons in the sheath whose phases intermix and produce a
decrease of direct resonance characterized by § I,.. Under our
experimental conditions, these phenomena were generally of 1lit-
tle importance as shown in a simplified theoretical study [17].
However, a systematic experimental investigation of these ef-
fects is under way.




3. Experimental Verification
a) Experimental Arrangement

We utilized a diffusion plasma of mercury vapor produced
by two lateral discharges in a sealed spherical balloon of
pyrex with a diameter of 30 cm. The lateral discharges are
contained each in a lateral "ear" of the balloon arranged at
the sides and have the same diameter (cf. Fig. 4). Each is
constituted by a barium and strontium-coated filament (heated
to 8000 C by rectified current) and by a cylindrical nickel
plate with a diameter of 4 cam surrounding the filament.

Heated in parallel the two filaments are brought to nagative

dc voltage in relation to the plates. The plate current is
controlled by a rheostat and the feed voltage. Accordingly,
the discharge current in each ear can be adjusted independently
between zero and 2.5 A. An anode-~-filament voltage of some 10 V
is necessary to initiate the discharge.

Since both discharges are radial, the plasma entering the
balloon is a diffusion plasma where the arrangement of the fila-
ment and the plates produces an electric field perpendicular to
the direction of penetration in the balloon and here provides
for a quasi-Maxwell distribution of the electrons in the range
of the discharges utilized.

A spherical probe of stainless steel with a radius of 2 cm.
is located in the center of the balloon and supported by the
center rod of a coaxial in such fashion that the h-f signal is
applied to the plasma only through the spherical surface of the
probe. The driving coaxial is insulated from the plasma by a
pyrex tube.

Two additional cylindrical probes have been provided, one
at half-radius and the other toward the wall of the balloon for
secondary controls. A nickel grid was also inserted at the out-
put end of one of the ears in order to make the plasma as sym-~
metrical as possible in the balloon.

Prior to sealing, the balloon was exhausted by prolonged
vacuum pumping during which the thermionic cathodes were acti-
vated in customary manner. At a residual pressure of about
106 mm. Hg, a few drops of mercury were introduced in the
balloon and the latter sealed. Accordingly, the pressure in
the balloon is equal to that of the mercury-vapor tension at
ambient temperature [25].

Toward 159 C when pressure is on the order of a micron,
the number of neutral molecules in the balloon is about 3.9 x
1013 per cm.3 and the mean free path of "neutral neutrons" and
"neutral electrons" is on the order of a few cm. and varies in-
versely to pressure. Measurement of electron density and plasma




10

temperature obtained with different discharge currents was made
by the static method of the classic Langmuir probe and compared
with the h-f method. The "static" measurements were made by
applying to the spherical probe a variable potential furnished
by a battery and by recording the resulting probe current on an
XY-recorder. The variation of tension was made manually by
means of a stepdown potentiometer.

The "h-f" measurements were made with the aid of a Wobbula-
tor with a sweep between zero and 80 Mc/s at a rate of 50 times
per second. The signal of the Wobbulator was amplified by two
wide-band amplifiers in order to obtain a h-f voltage between
2 and 3 V. The spherical probe was energized by h—-f across an
impedance transformer of the type "cathode follower" and the
high-frequency current measured by radiation with the aid of a
loop antenna around the balloon. The h-f voltage induced in
the loop was read from an_oscilloscope after previous amplifi-
cation by an appropriaté*élide wire,

The direct current of the probe passes through the polar-
ization cell and is applied across a resistor and a capacitor to
a wide-band low-frequency slide wire of the above oscilloscope
and displayed on the second time base of the latter. This made
it possible to simultaneously obtain the variation of Jyp and of
0 Icc, as a function of the frequency applied, for each value of
the discharges. The experimental arrangement is shown in Fig. 4.

b) Static Measurements
1. The Theory of the Langmuir Probe [26]

The current I collected by an electrode submerged in a
plasma and polarized at a variable static potential V5 (V4 = 0
corresponding to the plasma potential) is the sum of the elec-
tronic (Ig) and ionic (Ij) currents where we can distinguish
the characteristics Io = £ (Vp) and I = £ (Vy).

(i) - Electronic Characteristic

If the eletrons are in thermodynamic equilibrium at temper-
ature Te, and V5 < 0, we have

N = Noporp(eV/xT)

and Rel.(7)for the density of the electric current reaching the
probe. When Vo5 > 0, Jo no longer obeys rule 7 but increases
slightly with Vo, (formation of an electronic sheath and increase
of the effective surface of electron collection). From the
representation of log Ig = f(V,), we can determine Te, Ngo and
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the plasma potential Vo = 0. The floating potential Vi is de-
fined for |Ii| = |I_] '

e

(ii) - Ionic Characteristic /16

When V5. <0, the ions are no longer characterized by a
Maxwell distribution around the probeand fall freely on the
latter to form a positive space charge characterizing the sheath.
It is assumed that the mean free path of the ion is always large
in relation to the thickness of the sheath. 1In general, the
ion current I and the structure of the sheath can be obtained
only by numerical solution of the Poisson eguation

VV =-s(N =)
(]
where V = potential in the plasma (= Vo on the probe)..

A detailed review of the hypotheses and methods of solution
was given in [15]. 1In the following, we utilize the numerical
results based on the theories of Allen, Boyd and Reynolds [21]
and Bernstein and Rabinowitz [20] where thermal excitation of
the ions is neglected. Let us note that our experimental re-
sults also afford an indirect verification of these theories.
For a spherical probe, the Poisson equation presents itself in
the short form

or

1. . R (XA
=£I . J=_{:‘;a_£ ) ;‘—;E' ) IA:?—-(%) .

el D>

Chen [15] gives the numerical solution of this equation in the

form of a system of curves (Figs. 5, 6) which expresses the re-
lation between I;, V, Te and the distance r from the center of

the probe. We utilized this diagram for determining the Debye /17
distance and the thickness of the sheath.

Determination of Ap: for a given potential of the probe V,
we calculate .n since Te is already known from the electronic
characteristic. Ij is measured and J derived from this. On the
graphic, we read the value of ¢ corresponding to r = a, radius
of the probe, which furnishes Ap. 1In principle, we find the
same value of Ap if we repeat the operation for a different
value of Vo. If Te is not known, we must proceed by successive
approximation for several values of V.

11
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Determination of g: adopting the hypothesis of Ref., 14,
we define the sheath-plasma boundary by the condition Ny =
Neo/2 which corresponds to n = 0.7. For the same J as above,
we then obtain the value of § corresponding to r = a + g,
radius of the sheath. Evidently, the thickness g of the sheath

depends on the -polarization V, of the probe. It should be noted

that the theory of Bernstein and Rabinowitz [20] assumes that
the probe radius is greater than a certain critical value below
which certain particles would be "trapped" in the vicinity of
the probe.

2. Experimental Findings of Static Measurements

We utilized the same central spherical probe to plot the
Langmuir characteristics in a rather large range of discharges
I4 between 55 mA below which the discharge is extinguished to
700 mA (above which the distribution of the plasma in the
balloon is less homogenous). All these characteristics have
the rate of those shown in Fig. 7, with very sharp saturation
bends. Determined from the logarithmic slope after deducting
the ion current, the temperature varies between 3,200 and
4,600° K. The plasma potential varies between -10 and - 7 V
from the anode utilized to establish a reference potential for
the plasma (which is permissible in view of the large surface
of contact between this electrode and the plasma [24]). Between
55 and 700 mA, the density varies very uniformly between 4 x 105
and 6.4 x 107 electron/cm.3. The Debye distance was determined
from these electronic and ionic characteristics. There exists
excellent agreement above 400 mA but a rather marked divergence
below 200 mA with as much as a factor of 2.5 for the very weak
discharges. Fig. 8 summarizes the results obtained by static
measurement.

c) h-f Measurements

We made the following verifications of the theory of the
resonance probe:

1) resonance and antiresonance of IHF and 8§ I, occur
generally for identical frequencies. We see in Fig. 9 to 12
that the trace of the experimental curves corresponds to the
theoretical expectations. We further verified that, for a
given density Ngg, only the resonance frequency shifts when the
polarization Vo varies (cf. Figs. 9 to 12). Table I shows the
typical results.
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— Y N = 107 3 = 5,107 3
N__=2,75.10 e1/c§_f N__=3,50.107 c1/em3| N__ el/an
v

Vo | wrfer| w,/am Vo |wrfor | wyfem | V.| Wefan| /e
5,7V |22 Mz | 47 MHz 2,1 v| 20 Mk|8 Mz |2 V| 20 ME| 0OME

7,7V |23 a 3,8 |20,8 |a° 4 | 23,5 |a

| 5 21,9 |a° 7 | 26 de

7 24,1 |a°
Table I

2) antiresonance is manifested for wa = wp. Fig. 13 /19
compares the density thus calculated with that ogtained by the
Langmuir probe. The difference between the two methods is 1less

than 1%.

3) satisfactory agreement exists between the thickness
of the shedh g estimated from the curves of Ref. 15 and that
calculated from the value of the resonance and antiresonance
frequency (Fig. 13). Accordingly, our findings show that the
results deduced from the theory of Ref. 20 and from that of the
resonance probe concur and justify the approximation utilized
by assuming the sheath-plasma boundary defined by N =N o/2-
Fig. 14 shows in addition the influence of density and of pola-
rization V5, on the thickness of the sheath derived from the h-f
measurements.

4) the values of collision frequency v calculated from
R through Rel. 12 were compared to those derived from the data
of direct measurement of the effective cross section of collision
given by Ref. 27. Fig. 15 manifests satisfactory agreement.
Using the curves given in Ref. 27 is rather imprecise in view of
the rapid variation of the effective cross section of electron
collision in mercury as a function of energy at low energies.

5) we verified that the ratio R does pass through a
maximum with the amplitude of resonance tending toward zero when
Vo becomes very negative or on the contrary, when Vo, + 0. The

maximum is actually located in “)ia _‘foor discharges below

'

150mA. For stronger discharges, we were not able to verify
Formula 15 because, in order to attain a sheath thickness g=
a/2, a polarization was required such that the probe current
would have been too weak for reading.

13
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6) by varying, for a given value of V_ and Noor the 20
amplitude of the h-f signal (<I>o) , we found tRat /l ,Joé l?l {__
-ty L

2z
and that J{‘ch% up to values of,Q.Lcomparable to ,V:J :
(cf. Fig. 10). =
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THE RESONANCE PROBE
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